Navigational pattern based relevance feedback using user profile in CBIR

نویسندگان

  • Syed Karim
  • Muhammad Harris
  • Muhammad Arif
چکیده

Content Based Image Retrieval (CBIR) is an application of computer vision and addresses the problem related to retrieval of digital images in large image databases. CBIR uses low level image features for retrieval task and tries to portray users intended results. Relevance Feedback (RF) is a technique for marking retrieved results as relevant or irrelevant by the user. People in the society have mutual interests and needs while searching for required data. Interesting and similar patterns can easily be found in the browsing behaviour of users pursuing required images from CBIR system. Recording users browsing behaviour and applying mining techniques to find frequent itemsets helps boost the retrieval performance of the CBIR system in terms of quality and processing time. User categorized into different groups on the basis of users age and gender specification helps fasten the mining process because of the similarity of thoughts in these users groups. This paper focuses on mining user browsing behaviour belonging to different user categories (user profiling) with FP-growth mining algorithm for revealing similar search patterns. The results show efficiency against the existing approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

A new CBIR approach based on relevance feedback and optimum-path forest classification

Recently some CBIR approaches have shown the use of relevance feedback to train a pattern classifier to select relevant images for retrieval. This paper revisits this strategy by using an optimum-path forest (OPF) classifier. During relevance feedback iterations, the proposed method uses the OPF classifier to decide which database images are relevant or not. Images classified as relevant are so...

متن کامل

Query expansion based on relevance feedback and latent semantic analysis

Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...

متن کامل

Image Retrieval Using Navigation Pattern Mining and Relevance Feedback

Image retrieval is an important topic in the field of pattern recognition and artificial intelligence. Searching or retrieving image based on its content is called content based image retrieval. In CBIR, images are indexed by their visual content, such as color, texture, shapes. There are various methods so far implemented and all of these methods are also support by feedback system from the us...

متن کامل

An Adaptive Approach to Relevance Feedback in CBIR Using Mining Techniques

ISBN 978-93-82338-22-2 | © 2012 Bonfring Abstract--This paper provides a mining approach to the research area of relevance feedback (RF) in contentbased image retrieval (CBIR). Relevance feedback is a powerful technique in CBIR systems, in order to improve the performance of CBIR effectively. The drawbacks in CBIR are the features of the query image and the semantic gap between low-level featur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. Arab J. Inf. Technol.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2016